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Abstract We consider two-player parity games played on transition graphs of higher order
pushdown automata. They are “game-equivalent” to a kind of model-checking game played
on graphs of the infinite hierarchy introduced recently by Caucal. Then in this hierarchy we
show how to reduce a game to a graph of lower level. This leads to an effective solution and
a construction of the winning strategies.

1 Introduction

Games on finite graphs have been intensively studied for many years and used for modeling reactive
systems. In the last years, two-player games on simple classes of infinite graphs have attracted
attention. Parity games on pushdown graphs were solved by Walukiewicz in [18] using a reduction
to finite graphs and a refined winning condition involving claims for one player (see also [2]).
Kupferman and Vardi used two-way alternating automata in [15,17] to give a solution of parity
games on the more general class of prefix recognizable graphs (see also [3]). In this framework, a
solution means that given the finite description of the game, an algorithm should determine the
winner and compute a winning strategy. The model checking problem is equivalent to the question
of determining the winner: given a graph and a p-calculus formula, one can construct a parity
game such that the first player wins if and only if the formula is satisfied in the graph. In this
framework of game also weaker logics and winning conditions have been studied, see among others
[1,6,10,14].

In the present paper we consider a generalization to higher order pushdown automata for
defining the game graph, where the player and the priority of a configuration are determined by
the control state. We consider also the infinite hierarchy of graphs defined recently by Caucal [5]
from the finite trees using inverse mapping and unfolding. The paper has two main contributions:
an equivalence via game-simulation between higher order pushdown automata and the Caucal
graphs, and an effective solution of parity games on both of these types of graphs. Using this
game-simulation we show how to translate a game on a higher order pushdown automaton to a
kind of model-checking game on a Caucal graph; one can then reduce such a game to a game on
a graph from a lower level of the hierarchy and finally to a parity game on a finite graph, which
gives an effective solution. It is then possible to reconstruct a wining strategy for the original
game. As far as we know this is the first result in this direction. So far only the decidability of
MSO-properties of these graphs was known [5,13].

In the next section we define the different models of graphs and automata considered. Then
we present in terms of game-simulation the reduction from higher order pushdown automata to
the Caucal graphs and vice versa. In Section 4 we show that a game on a Caucal graph can be
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reduced to an equivalent game on a graph of lower level. For this we use a generalization of ideas
from [17] to trees of infinite degree: the construction of an alternating one-way tree automaton
equivalent to a given two-way alternating automaton. The main result that we use without proof
is the positional (memoryless) determinacy of parity games of [8]: from any configuration one of
the players has a positional winning strategy. We assume that the reader is familiar with the basic
notions of language theory, automata, graphs and games (see [11] for an overview).

2 The Models

We note [maz] = {0,--- ,maz — 1} for an integer maz > 0. We write regular expressions in the
usual way, for example (a + b)*c for letters a, b, ¢ from a (finite) alphabet I'. The empty word is €
and I'S i= e+ T+ I + 1% = Uy I

2.1 Parity games

A game structure is a tuple (Vp, V1, E, 2), where V = V5 W V; is a set of vertices partitioned into
vertices of Player 0 and vertices of Player 1, E C V x V is a set of edges (directed, unlabeled), and
2 :V — [max)] is a priority function assigning to each vertex an integer between 0 and maz — 1,
with maz > 0. Starting in a given initial vertex o € V', a play in (Vp, V1, E, 12) proceeds as follows:
if mo € Vp, Player 0 picks the first transition (move) to m with moEwy, else Player 1 does, and so
on from the new vertex 7;. A play is a (possibly infinite) maximal sequence 77y - - - of successive
vertices. For the winning condition we consider the min-parity version: Player 0 wins the play
momy -+ - iff liminfy_, o 2(7y) is even, i.e., iff the minimal priority seen infinitely often in the play
is even. If the play is finite because of a deadlock, then by convention the player who should play
loses immediately.

A strategy for Player 0 is a function associating to each prefix momy - - -7, of a play such that
mn € Vo a “next move” w41 with m, Em, 1. A strategy is positional (or memoryless) if it depends
only on the current vertex m,,. We say that Player 0 wins the game from the initial vertex mg if he
has a winning strategy for this game: a strategy such that he wins every play.

A game structure (Vo, V1, E, 2) is game-simulated by another game structure (Vy,V{, E', (2"
from initial vertices mo € V and ny € V' if

— Player 0 wins the game (Vy, VY, E', {2') from =} iff Player 0 wins the game (Vp, V1, E, 2) from
0,

— from a winning strategy of Player 0 in (Vy,V{, E', ') one can compute a winning strategy of
Player 0 in (Vp, V1, E, 2).

2.2 Higher Order Pushdown System

We recall the definition from [13] (which is equivalent to the one from [9]), where we slightly
change the terminology. A level 1 store (or I-store) over an alphabet I' is an arbitrary sequence
[a1,- -+ ,ae] of elements of I', with £ > 0. A level n store (or n-store), for n > 2, is a sequence
[s1,-- ,8¢] of (n — 1)-stores, where £ > 0. We allow a store to be empty. The following operations
can be performed on 1-store:

pushi (a1, - ,a¢—1,a4]) :=[a1, - ,ap_1,a¢,a] for alla € I" |
popl([ah" . 7‘”*17‘”]) = [a17" . JU’Z*I] y
top([ala" . 7a€—1;af]) =Gy .



If [s1,- -+ ,si1] is a store of level n > 1, the following operations are possible:

pushy([s1,-+ ,80-1,8¢]) == [S1," - ,5¢,5¢] »
pushg([s1, - ,80-1,8¢)) == [s1,- -~ ,pushp(sp) ] f 2 < k< m,
push$([s1, - ,80-1,8¢)) :=[s1,--- ,push{(se)] for alla € I" ,
popn([s1,° -+ ,8e-1,8¢]) := [81,- -+, 8¢-1]
popr([s1,--- ,86-1,8¢]) :=[81, " ,8e—1,popr(se)] if 1 < k< n,
top([s1,-- -, Se—1,8¢]) := top(se)

The operation popy, is undefined on a store, whose top store of level k is empty. Similarly top is
undefined on a store, whose top 1-store is empty. Given I" and n, the set Op,, of operations (on a
store) of level n consists of:

pushy, for all 2 < k < n, push{ for all a € I', and popy, for all 1 < k < n.

A higher order pushdown system of level n (or n-HPDS) is a tuple H = (P, I, A) where P is the
finite set of control locations, I" the finite store alphabet, and A C P x I' x P x Op,, the finite set
of (unlabeled) transition rules. A configuration of an n-HPDS H is a pair (p, s) where p € P and s
is an n-store. The set of n-stores is denoted .#,,. We do not consider HPDS as accepting devices,
hence there is no input alphabet. A HPDS H = (P, I', A) defines a transition graph (V,E), where
V ={(p,s) :p € P,s € #,} is the set of all configurations, and

(p,8)E(p',s') <= 3(p,a,p’,0) € A :top(s) =a and s' = o(s) .

Note that if the top 1-store is empty, no transition is possible. If necessary one can add a “bottom
store symbol” 1 € I' and define explicitly the corresponding transitions, such that it cannot be
erased. To define a parity game on the graph of a HPDS, we assign a priority and a player to each
control state, and we consider an initial configuration: a game structure on a HPDS H is a tuple
¢ = (H, Py, P1, 2, s0), where P = Py Py is a partition of the control states of H, 2 : P — [max]
is a priority function, and sg € V. This extends naturally to a partition of the set of configurations
and to a priority function defined on this set: with the notations of Section 2.1, Vo = Fy x %,
Vi =Py x %, 2((p,s)) = £2(p), and E is defined above.

2.3 Caucal Hierarchy

We recall the definitions from [5]. Let L be a countable set of symbols for labeling arcs. A graph
is here simple, oriented and arc labeled in a finite subset of L. Formally, a graph G is a subset of
V x L x V, where V is an arbitrary set and such that its label set

Lg:={a€L|3s,t:(s,a,t) € G} is finite, but its vertex set
Ve :={s | 3Ja,t: (s,a,t) € GV (t,a,s) € G} is finite or countable.

We write also t —5* s (or t -2+ s) for (t,a,s) € G.

A finite graph is a graph whose vertex set is finite. A tree is a graph where each vertex has at
most one predecessor, the unique root has no predecessor, and each vertex is accessible from the
root. A vertex labeled tree is a tree, with a labeling function associating to each node a letter from
a finite alphabet. The unfolding of a graph G is the following forest (set of trees):

Unf(G) :={ws 2 wsat:w € (Vg - Lg)* /\s%hf} )



The unfolding Un f(G, s) of a graph G from a vertex s is the restriction of Unf(G) to the vertices
accessible from s. Given a set of graphs ##, Unf(J#) is the set of graphs obtained by unfolding
from the graphs of #. Inverse arcs are introduced to move up and down in trees: we have a set
L := {a | a € L} of fresh symbols in bijection with L. By definition, we have an arc (s,a,t) iff
(t,a,s) is an arc of G. Note that in a tree there is at most one inverse arc from a given node.

In the usual way s%)*t means that there is a path from s to t labeled by the word w. A
substitution is a relation h C L x (L U L)*. Tt has finite domain if Dom(h) := {a | h(a) # 0} is
finite. In this case, the inverse mapping of any graph G by h is

h"H(G) ={s—2t | Jw € h(a) : s =t} .

The mapping h is rational if h(a) is rational for every a € L. Given a set of graphs 5, Rat ()
is the set of graphs obtained by inverse rational mapping from the graphs of . Let Treeg be the
set of finite trees. The Caucal Hierarchy is defined in the following way:

Graph,, := Rat *(Tree,) ,
Treent1 := Unf(Graphy,) .

Here Graphyg is the set of finite graphs, T'ree; is the set of regular trees of finite degree and Graph;
is the set of prefix-recognizable graphs [4]. The other levels are mostly unknown.

Theorem 1 ([5]) UnZO Graph,, is o family of graphs having a decidable monadic theory.

As a corollary, p-calculus model checking on these graphs is decidable, and one can determine
the winner of a parity game. But this result of decidability in [5] rely on the results from [4,7,19]
whereas for the restricted framework of games we give here a direct algorithmic construction for
determining the winner and a winning strategy.

2.4 Graph Automaton

An alternating parity graph automaton, or graph automaton for short, as defined in [15] is a
tuple & = (Q,W,4,qo,{2) where @ is a finite set of states, W is a finite set of edge labels, ¢
is the transition function to be defined below, gy € @ is the initial state, 2 : Q — [maz] is a
priority function defining the acceptance condition: the minimal priority appearing infinitely often
should be even. Let next(W) = {e} UU,cw{lal, (a)}, and B (next(W) x Q) be the set of positive
Boolean formulas built from the atoms in next(W) x @. The transition function is of the form
§:Q — BT (next(W) x Q). In the case of graphs, we will consider W C L, whereas in the case of
trees, we will allow W C LU L.

A run of a graph automaton & = (Q, W, 4, qo, 2) over a graph G CV x L x V from a vertex
so € V is a labeled tree (T, r) in which every node is labeled by an element of V' x Q. This tree is
like the unfolding of the product of the automaton by the graph. A node in T;., labeled by (s, q),
describes a “copy” of the automaton that is in state ¢ and is situated at the vertex s of G. Note that
many nodes of T, can correspond to the same vertex of GG, because the automaton can come back
to a previously visited vertex and because of alternation. The label of a node and its successors
have to satisfy the transition function. Formally, a run (T,,r) is a X,.-vertex labeled tree, where
Y, =V x Q and (T}, r) satisfies the following conditions:

— r(to) = (s0,q0) where tg is the root of T;.
— Consider y € T, with r(y) = (s,q) and d(q) = 6. Then there is a (possibly empty) set Y C
next(W) x @, such that Y satisfies 6, and for all (d,¢') € Y, the following hold:
o If d = ¢ then there exists a successor y' of y in T} such that r(y') = (s,¢').



e If d = (a) then there exists a successor y' of y in T}, and a vertex s’ such that s % s' and
() = (s',). )

e If d = [a] then for each vertex s’ such that s —-*s', there exists a successor y' of y in T,
such that r(y') = (¢, ¢')-

The priority of a node y € T,., with r(y) = (s, q), is £2(¢). A run is accepting if it satisfies the parity
condition: along each infinite branch of T;., the minimal priority appearing infinitely often is even.

When G is a tree, & is like an alternating two-way parity automaton of [15], because it can go
up and down, but here the degree of the tree can be infinite. It is more general than the model of
[12] which cannot distinguish between son and parent node. For the proofs we will also consider a
tree automaton (defined as a graph automaton) that “reads” the labels of the vertices.

One can also consider the model-checking game: in a given graph Player 0 wants to prove that
a formula is true and Player 1 has to challenge this. Similarly Player 0 wants to find an accepting
run and Player 1 wants to refute it: a graph G C V x L x V and a graph automaton & over G
where W = L¢ define a parity game denoted by (G, o). The configurations of the game are pairs
(s,q) € V x @, the initial configuration is (sg, go)- In general one needs also other configurations
corresponding to subformulas of §(g) to allow existential / universal choices: Player 0 makes the
existential choices, Player 1 makes the universal ones. It is well known that a run is a strategy for
Player 0, and an accepting run is a winning strategy for Player 0, see e.g. [11, ch. 4].

3 Game-Simulation between HPDS and Caucal Graphs

In this section we show an equivalence between a model based on graph transformations, where
the vertex set is “abstract” —the Caucal graphs— and a model based on rewriting of “concrete”
nodes —the HPDS. This game simulation should be compared to the notion of weak (bi)simulation.
Moreover it seems that one can deduce from the following construction that each transition graph
of a HPDS is a graph of the Caucal hierarchy of the same level.

3.1 From HPDS to Caucal Graphs

Theorem 2 Given a game structure 4 on a HPDS H of level n, one can construct a graph
automaton & and a tree T € Tree, such that 4 is game-simulated by (T, ).

The tree T' € Tree,, depends only on n and I'.

Proof: (sketch) We describe the construction for n = 1,2 and 3 before we give the generalization.
Let ¥ = (H, Py, P1,(2,s0), H= (P, I',A) of level n.

Case n = 1. The idea here is similar to that of [15] and [4].

Let 71 be the complete I'-tree. It is the unfolding of a finite graph with a unique vertex and so
T, € Tree;. See an example in Figure 1 where I' = {a,b}. This tree is isomorphic to I'* in the
sense that each node is associated to the label of the path from the root to it (we write the store
from bottom to top, so we consider suffix rewriting in the application of the rules). It is easy
to simulate a 1-store with this tree: each node corresponds to a word, which is a store content.
Intuitively the effect of a transition (p,a,p’,push?) on the store is simulated over T; by a path
@ab. Formally the state space of & is Q = P x (L U L)<®, where a state (p,¢) on a node v € T}
represents a configuration (p, [v]) of the HPDS (by abuse v is associated to a word of I'*), whereas
the states (p, x), x # € are intermediate states that simulate the behavior of the store. From these
intermediate states, the transition is somehow “deterministic”: Va € LUL, x € (LU L)S? :

ifp € PO then 5((]77 CLZL')) = <<a) ) (p7 :E)) )
if p € P, then 8((p, az)) = ([a], (p,2)) -
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Figure 1. The complete {a, b}-tree T} obtained by unfolding of a finite graph, and the same with a “bottom
stack symbol”

Note that here (on T1), if a € L the “actions” (a) and [a] are equivalent. From the states (p, ) the
corresponding player has to choose the move:

ifpe Pothend((pe))= \ (@@) v (@ awb),
(p,a,p’,pop1)€A (p,a,p',pushb)eA

if p € Py then 6((p,€)) = A @) A N (@, ab) .
(p,a,p’,pop1)EA (p,a,p' ,pushb)eA

We see again that the convention is satisfied: when the play is in a deadlock, the player who should
play loses immediately.

Case n = 2. For each letter a € I', we assume that we have a fresh symbol & in L. We define the
graph Gy € Graphy from the tree Tj:

G1=hi'(Th)
where the (finite) substitution h; is the following:

hi(a)=aforallae I, h(2)=¢,
hi(a)=aforallae .

Hence we suppose that 2 € L is a fresh symbol. A part of the graph G; is pictured in Figure 2.

2

O/ Q\\ff

VIAND NG

Figure 2. Graph G; for I' = {a, b}



The loops labeled by 2 will be used to simulate the “copy” of the store content, i.e., an operation
pushs.

Then the tree To € Treey is the unfolding of G; from the vertex that was the root of 73. In
Figure 3 extra node-labels are added. They represent the corresponding 2-store. Note that several
nodes can represent the same store content. The operations on 2-stores are simulated by paths in
T5. More precisely, the effect of a transition is simulated in the following way if I' = {a, b}:

(p,a,p',push}) corresponds to aab ,
(p,a,p’,pop1) corresponds to a,

(p,a,p’, pushs) corresponds to aa2 ,
(p,b,p', pop2) corresponds to i)(ﬁ +b+a+ g) 2

. -\ *
Of course the expression b(ﬁ +b+a+ b) 2 is regular, and one can move along such a path using
three states of .&/. Because we are on a tree, there is no infinite upward path. Following a 2-arc
allows to copy the top 1-store because we stay exactly in the same position in G;. For popping
the top 1-store, one has to find the last 2-arc that was used, and follow it in the reverse direction.
Note that just after a pushs (a 2-arc), we cannot move along an inverse arc @ (to simulate a pop; ),
that’s why the arcs a are necessary.

= [(01]

N,

[[allal] +—— lall = [[b][6]] — [[bl[b][b]]

AP

llaa]] ~ [[ab]]  [[ba]] [[b][ba]]  [[b][00]]

Figure 3. An initial part of the tree T

Case n = 3. We go on with G5 € Graphs, defined from T5:
G = by (Th)
where the substitution hs is the following;:

ha(a) =aforallae I, h2(2) =2
ha(a) =aforallae I', ha(2) = {
h2(3) =£.



Then T3 € T'rees is the unfolding of G2 from the “root” (of T5). On T3 one can simulate a 3-store,
almost the same way as a 2-store is simulated on T5 (here I' = {a, b}):

p,a,p, push®) corresponds to aab ,
1
(p,a,p',pop1) corresponds to a ,
(p, a, P, pushs) corresponds to aa2 ,
(p,a,p',pops) corresponds to a2 ,
(p,a,p',pushz) corresponds to aa3 ,
— - — _ -\ * _
(p,a,p',pops) corresponds to a(Q +2+a+b+a+ b) 3.

General case. It is easy to follow the construction: for n > 3, G, is obtained from T, using
substitution h,:

hn(a) =aforalla e I', hp(k) =kforall2< k< n,
hn(@) =aforallae ',  hy(k)=kforall2<k<n
hin (1)

)

n( ={E,E,E,E| aeF,2<k<n} n,
£

’

’

and T,,4; is the unfolding of G,, from the “root”. The automaton & has the same states as H

plus auxiliary states for the regular expressions. It is clear that the winner of ¢ is the winner of
(T, o), and a winning strategy in (T, &) can be translated to a winning strategy in ¢ (the other
direction holds also here). B

3.2 From Caucal Graphs to HPDS

Lemma 3 Given a graph G € Graph, and a graph automaton <, one can construct a game
structure 4 on a HPDS H of level n such that (G, ) is game-simulated by ¥ .

Proof: (sketch) The result is clear for n = 0, because G and & have a finite number of vertices
and states.

Given Ty € Treey, T1 = Unf(Go, s) for some Gy € Graphg, we let I' = Vg, x Lg,. Letters from
I' will be pushed on a 1-store to remember the position in the unfolding, which is a path from
s. Additionally the labels from L¢, will allow to determine which inverse arc is possible from the
current position. To simplify the notation we write (a, ¢') € §(q) if {a,q') is an atom present in the
formula &(g). It is clear that the existential/universal choices in the formula can be expressed in
the control states of a HPDS, so we skip this part and concentrate on the actual “moves”:

(a,q') € 6(q) corresponds to (g, (v, _),q',pushgu’a)) if vﬁo*u ,
(@,q') € 6(g) corresponds to (g, (- a),q'; pop1) .

A graph in Graph; can be simulated the same way using intermediate states for the rational
substitutions.

Let Ty € Treey, To = Unf(G1,s), T» can be simulated by a 2-store: each transition of G; is



simulated on the top l-store just like above, but the top 1-store has to be “copied” by a pushs
operation to keep track of the unfolding. It is also necessary to remember at each move the label
of the arc of G; that was used. A solution is to use the following stack alphabet:

Ir= (VGO X LGO) W ({2} X LG1) .
An action {a,q') € §(q) is simulated by the following sequence of operations:
pushs
< simulation of an a-arc of Gy on the top 1-store >
h(27a)
push;”" .
And an action (@,q') € §(q) in the following way:
< check that the top symbol is (2,a) >
bop> -

And so on for n > 3. This construction is more natural if we use the model of higher order pushdown
automata from [9], but both models are clearly equivalent [13]. B

4 Reducing the hierarchy level

In this section we present our main result: an algorithmic solution of parity games on the graphs
of the Caucal hierarchy, and hence on HPDS. The proof is by induction on the definition of the
hierarchy, using the next two lemmas to obtain graphs of lower levels.

Lemma 4 Given G € Graph, and a graph automaton <7, the game (G, %) can be effectively
simulated by a game (T, PB), where T € Tree,, such that G = h=*(T), and B is a graph automaton.

The proof uses similar techniques as in [2] or [15] for the case of prefix-recognizable graphs.

Proof: By definition G = h=1(T'). The aim is to “simulate” an a-transition of & along an arc
of G by a path in T": a sequence of transitions of & labeled by a word of h(a). The automaton
B =(Qz, Wa,04,4),22) will have the same states as & plus auxiliary states for this simulation.
For each a € L, h(a) is regular. If h(a) # 0, let

(Ka = (Qa;Wa; Aaaqu:Fa)

be a (non-deterministic) finite automaton on finite words recognizing h(a). Here F, is the set of
final states. We consider %, as a finite graph, and note the transitions ¢, %qg for g4, ¢, € Q-
The new auxiliary states of & are of the form (g,,[q]) and (ga, (¢)) for ¢ € Qu, ¢o € Qq- To obtain
the transitions of & from the transitions of <,
each atom ([a],q) is replaced by (g, (qoa,[q])) ,
and each {(a),q) is replaced by (g, (qoa,{q)))

in the body of a transition g (g'). Of course the atoms (e, q) remain unchanged. Then the new
transitions of & are

0a((qa: 1) = N (bl(dla)) A N\ (c9),

qa%—bq; 9a€Fa
52, @)=\ (B),(d@) Vv \ E&a),
qaih;' qa€Fq

Ca



for each a € L such that h(a) # 0.

To avoid the game to stay forever in the intermediate nodes of %, we assign to these nodes a
priority that is losing for the corresponding player. Suppose that the priority function (2, of &
ranges from 0 to 2¢, ¢ > 0, then we fix

2%((da,1a])) =2¢, 23((¢a:{(0))) =2c+1.

And dualy if the maximal priority of 7 is 2c¢ + 1, then the new priorities are 2¢ + 1 and 2¢ + 2.
They do not interfere with the “real” game (G, o). So one has one new priority and in the worst

case the number of states of & is |Qz| = |Q«| (1 + 2 n(a)£0 |Qa|). ]

Lemma 5 Given T € Tree,y1 and a graph automaton <, the game (T, o) can be effectively
simulated by a game (G, B), where G € Graphy, such that T = Unf(G,s), and & is a graph
automaton.

This result is related to the k — covering of [7], where k is the number of states of &/. The
proof is based here on the construction of a one-way tree automaton that is equivalent to 7. This
construction was presented in [17] only in the case of (deterministic) trees of finite degree. The idea
is that if Player 0 has a winning strategy in (T, &), then he has also a positional winning strategy
[8]: choosing always the same transition from the same vertex. This strategy can be encoded as a
labeling of T' using a (big) finite alphabet. Then several conditions have to be checked to verify
that this strategy is winning, but it can be done by a one-way automaton. Finely this strategy can
be non-deterministicaly guessed by the automaton. And a one-way automaton cannot distinguish
T and G.

We give here a flavor of this proof, details are in Appendix. Formally a strategy for &/ and a
given tree T' is a mapping

T:Vr — 2(Q x next(W) x Q) .

An element (q,d,q') € 7(x) means that when arriving at node z € Vr in state ¢, the automaton
should send a copy in state ¢’ to the node in direction d (and maybe other copies in other directions).
A strategy must satisfy the transition of &7, and a strategy has to be followed:

Vo e Vr,V(q,d,q) € 7(x) :

{(d2,42) | (¢,d2,q2) € T(x)} satisfies §(¢q) and:

- if d = ¢ then 3dy, q1,(¢',d1,q1) € 7(x) or ) satisfies 6(¢) ,

- if d = [a] then Yy : 2 5y = 3di, q1, (¢, dr, q1) € T(y) or P satisfies 5(¢’) ,
-if d = (a) then Jy: x>y A3di,q, (¢, di, @) € T(y) or @ satisfies 5(¢’) .

For the root tg € V we have:
3d1,q1, (g0, d1,q1) € 7(to) or P satisfies 6(qo) - (1)

Considering St := Z(Q x next(W) x ()) as an alphabet, a St-labeled tree (T, 7) defines a positional
strategy on the tree T. One can construct a one-way automaton that checks that this strategy is
correct according to the previous requirements.

The second step of the reduction from two-way to one-way is concerned with the priorities seen
along (a branch of) the run, when one follows a strategy 7. To check the acceptance condition, it
is necessary to follow each path of ./ in T" up and down, and remember the priorities appearing.
Such a path can be decomposed into a downwards path and several finite detours from the path,
that come back to their origin (in a loop). Because each node has a unique parent and & starts



at the root, we consider only downwards detour (each move @ is in a detour). That is to say, if a
node is visited more than once by a run, we know that the first time it was visited, the run came
from above. This idea of detour is close to the idea of subgame in [18]. To keep track of these finite
detours, we use the following annotation. An annotation for 27, a given tree T and a strategy 7 is
a mapping

n: Vi — P(Q x [mazx] X Q) .

Intuitively (g, f,¢') € n(z) means that from node z and state ¢ there is a detour that comes back
to x with state ¢’ and the smallest priority seen along this detour is f. Again 7 can be considered
as a labeling of T, and a one — way automaton can check that the annotation is consistent with
respect to the strategy in reading both labelings. A typical requirement is:

(¢,la, ) €T(z) = VyeVr:z-—Sy=
[(g1,a,¢") € T(y) = (g, min(2(q1), 2(¢')),q') € n(=z)] .

The last step is to check every possible branch of the run by using the detours: it is easy to
define a one-way automaton & that “simulates” (follow) a branch of the run of 2. One can change
the acceptance condition of & such that it accepts a tree labeled by 7 and 7 iff there exists a branch
in the corresponding run of &/ that violates the acceptance condition of 7. Then using techniques
from [16] one can determinize and complement &. Finally the product of the previous automata has
to be build, to check all conditions together, and a “projection” is necessary to nondeterministicaly
guess the labels, i.e., the strategy and the annotation.

Theorem 6 Parity games on higher order pushdown systems are solvable: one can determine the
winner and compute o winning strategy.

As a corollary we get a new proof that the p-calculus model checking of these graphs is decidable
(it was known as a consequence of the MSO-decidability).

Proof: Given a game structure ¢ on a HPDS H of level n, one obtains from Theorem 2 a graph
automaton & and a tree T € Tree, such that (T, &) is a game simulation of ¢. By successive
reductions using Lemmas 4 and 5, one can obtain a game on a finite graph which is equivalent to
the initial game. Using classical techniques (see [11, ch. 7]), one can solve this game, and compute
a positional strategy for the winner. Then one can step by step reconstruct the strategy for the
graphs of higher levels. B

5 Complexity, Strategy

The one-step reduction of Lemma 5 is in exponential time in the description of T' € Tree,4+1 and
&/, and the size of the output is also exponential. For this reason the complexity of the complete
solution of a parity game on a Caucal graph or on a HPDS is a tower of exponentials where the
height is the level of the graph. The classical translation from parity game to u-calculus to MSO
and the corresponding decision procedure is already non-elementary (in the number of priorities)
for level 1 graphs. And following [19] the (one-step) transformation of an MSO-formula from the
unfolding to the original graph is also non-elementary.

Using the reductions presented here, one can compute a winning strategy for a 1-HPDS game
which is a finite automaton that reads the current configuration and outputs the “next move”,
like in [15,3]. But it is more natural to consider a pushdown strategy as introduced in [18]. It is a
pushdown transducer that reads the moves of Player 1 and outputs the moves of Player 0. It needs
additional memory (the stack), but the computation of the “next move” can be done in constant



time. When we recompose the game, a strategy for an n-HPDS game is an n-HPDS with input
and output which possibly needs to execute several transitions to compute the “next move” from
a given configuration.
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Appendix

Proof: (Lemma 5) We adapt the construction from [17] to the case of infinite degree. Recall that
W C LUL. As remarked above, the question whether Player 0 wins the game (T, &) is equivalent
to the question whether there is an accepting run of & on T. We want to check this condition with
a one-way tree automaton.

We know from [8] that if Player 0 has a winning strategy, then he has a memoryless winning
strategy. In other words, if .2/ has an accepting run, then it has an accepting run using a memoryless
strategy: choosing always the same “transitions” from the same node and state. We decompose
the run of & using this strategy.

Definition: A strategy for & and a given tree T' is a mapping
T:Vr — P(Q x next(W) x Q) .
A strategy must satisfy the transitions of o7, and a strategy has to be followed:
Vz € Vp,V(g,d,q') € T(z) :

{(dz2,¢2) | (¢,d2,q2) € T(x)} satisfies §(q) and: (2)
- if d = ¢ then 3dy,q1,(q',d1,q1) € 7(x) or () satisfies §(¢') , (3)
- if d = [a] then Vy : =y = 3dy, q1, (¢, di, q1) € 7(y) or P satisfies 5(¢) , (4)
-if d = (a) then Iy : 2~y A3di,q1, (¢, di, @) € T(y) or @ satisfies 5(¢’) . (5)

For the root ty € Vr we have:
Hdl, qi1, (qO, d1, (J1) € T(to) or @ satisfies (5((]0) . (6)

Considering St := Z(Q x next(W) x @) as an alphabet, a St-labeled tree (T, 7) defines a mem-
oryless strategy on the tree T. We will construct a one-way automaton % that checks that this
strategy is correct according to the previous requirements. For (g,{a),q') € 7(z), if a € L it
has just to check in the direction a downwards that the strategy is well defined for ¢', but if
(q,{a),q') € 7(z), @ € L he must have remembered that the strategy was defined for ¢’ in the
parent-node, and that the arc from the parent node is labeled by a. The states of € are tuples
(Q1,Q2,0) € Z(Q) x Z(Q) x (W N L), where £ is the label of the arc from the parent node,
¢ € Q1 means that % has to check (down) that the strategy can be followed for ¢', and ¢" € Q2
means that ¢ is already allowed at the parent node. Note that if a is the label of the arc from the
parent node, then the actions [a] and (@) are equivalent, because in a tree there is no more than
one parent node. So we shall write simply @ for both cases when we know from the context that
it is right. If a is not the label from the parent node, then [a] means immediate “wins”, and (@)
means immediate “lost” (for Player 0). Let

%= (2(Q) x P(@) x £.5t.6¢. ({10}.0.1) true) where (7
I ((Q1,Q2,0) ,11) :=

IF Vg € Q1, {(d2,q2) : (q,d2,q2) € 71} satisfies §(g), and (8)

Y(d',e,q) € 71, {(d2,q2) : (¢,d2,q2) € 71} satisfies d(q), and (9)

V(g,[al,qd') € :a=L0= ¢ € Q2, and (10)

V(g, (@) ,d)en:a=LAq €Q (11)

THEN A (@{d:3(@dd) en}Qh) (12)
denext(WNL)\{c}

with Q) := {q¢" : 3 d1,q1, (¢",d1,q1) € 7 or { satisfies 6(¢")}, (13)

ELSE false. (14)



Condition (9) is related to (3), (10) and (11) to (4) and (5) where a € L, and (12) to (4) and (5)
where a € L. In condition (8) there is no requirement on the ¢ ¢ @1, that’s why the condition
(2) above is stronger. This is not a problem for the following, as we are searching some winning
strategy (one could define the minimal valid strategy as in [17]).

The acceptance condition is easy to enunciate: it just requires that the run can be followed, i.e.,
the transition is possible at each node. In the initial state ({go},,b), the letter b is not relevant.
% is a one-way automaton with 4/9! states.

Proposition: A two-way alternating parity automaton accepts an input tree iff it has an accepting
strategy over the input tree.

With the help of a so called annotation, we will check in the following whether a strategy is
accepting.

Annotation

The previous automaton % just checks that the strategy can be followed (ad infinitum) but forgets
about the priorities of 7. To check the acceptance condition, it is necessary to follow each path of
&7 up and down, and remember the priorities appearing. Such a path can be decomposed into a
downwards path and several finite detours from the path, that come back to their origin (in a loop).
Because each node has a unique parent and & starts at the root, we consider only downwards
detour (each move @ is in a detour). That is to say, if a node is visited more than once by a run,
we know that the first time it was visited, the run came from above. This idea of detour is close to
the idea of subgame in [18]. To keep track of these finite detours, we use the following annotation.

Definition: An annotation for o/ and a given tree T is a mapping
n: Vi — P(Q x [mazx] x Q) .

Intuitively (g, f,¢') € n(z) means that from node z and state ¢ there is a detour that comes back
to = with state ¢’ and the smallest priority seen along this detour is f. By definition, the following
conditions are required for the annotation n of a given strategy 7, indeed a detour can stay in the
node z (15,16), go down to a child y and come back immediately to z (17,19), or go down to y,
use another detour from y and then come back to z (18,20).

Vg, €Q, z €V, ae WNL, f,f €[maz]:

(¢,6,¢") € () = (¢,2(¢'),q) € n(=) , (15)
(g1, f,q2) € n(x) A (g2, ', g3) € n(x) = (g1, min(f, f'), q3) € n(z) , (16)
(g,[a],q1) € () = VyeVr:z-2Hy=>
[(@1,3,4") € (y) = (¢, min(2(q1), 2(¢')),q") € n(x)] , (17)
(¢,[a], @) €T(x) = VyeVr:z-5y= (a1, [, ) €nly) A(e2,a,d) € T(y)
= (¢, min(2(q1), £, 2(¢)),¢') € n(=z)] . (18)

The next conditions have to be “synchronized” with the automaton % that checks the strategy.
The a-successor y of x is “chosen” by %:
(¢;{a),q1) €T(x) = yeVr:z-ZyA
[(a1,a,4') € 7(y) = (¢, min(2(a1), 2(d")), ") € n(z)], (19)
(¢,(a),q1) €7(x) = FyeVr:z-yAl(q,f,0) €ny) A(eaq)e(y)
= (¢, min(2(a1), f, 2(¢')), ¢') € n(z)]. (20)

)
T



Considering An := 2(Q x [maz] x @) as an alphabet, the aim is now to construct a one-way au-
tomaton 2 on (An x St)-labeled trees that checks that the annotation satisfies these requirements.
Conditions 15 and 16 above can be checked in each node (independently) without memory. For
conditions 17 to 20, the automaton has to remember the whole 7(x) from the parent node z, and
the part of 7(z) leading to the current node. Let

9D = (An x 2(Q x Q), An x St,54,(0,0) , true),
where

59((%: a) ) (77177—1» =
IF conditions 15 and 16 hold for ; and 7, AND

V(g,q) € @ (q1,8,¢') €t = (g, min(2(q1),2(¢")),q") € mo (21)
V(g,q) € a: (a1, f,q2) € m A(g,a,q) €n
= (¢,min(2(q1), f,2(¢')),q') €mo (22)
THEN /\ (d, (m,{(q, @) : exists (¢,d,q1) € T1}))
denext(WnNL)\{e}
ELSE false .

Condition (21) is related to (17,19), and (22) to (18,20). We recall that in the case that (g, {a),q1) €
71, the (a)-transition has to be synchronized with the one of the automaton %: the product au-
tomaton that we will define later has to chose an a-successor and follow the run of ¥ and 2 from
this successor.

Similarly to €, 2 is a one-way automaton with 21Q*m . 21Q” = 2lQP(m+1) states, and the
acceptance condition is again trivial. Note that if a part of the tree is not visited by the original
automaton &, the strategy and annotation can be empty on this part. The automaton & does not
check that the annotation is minimal, but this is not a problem. With the help of the annotation
one can determine if a path of & respects the acceptance condition or not, as showed in the next
part of the proof.

Parity Acceptance

Up to now the automata € and 2 together just check that the strategy and annotation for the
run of & are correct, but do not verify that the run of & is accepting, i.e., that each path is
valid. With the help of the annotation we can “simulate” (follow) a path of & with a one-way
automaton, and determine the parity condition for this path. This one-way automaton does not
go into the detours, but reads the smallest priority appearing in them. Let

& := (Q x [mazx], An x St,d¢,{q0,0), ),
ds({q,4) , (m,m)) == V (a),(d,2@)) v\ (&(d, )

(¢.d,q")€71,d=[a]Vd=(a) (¢:.f.9")EM

Once again if d = (a), the automaton has to be synchronized with ¥ and 2 to choose the right
a-successor. At each step & either goes down following the strategy, or simulates a detour with
an e-move and the corresponding priority. The second component ([maz]) of the states of & just
remembers the last priority seen. We can transform & into a nondeterministic one-way automaton
&' without e-moves with the same state space. Note that & can possibly stay forever in the same
node by using e-transitions, either in an accepting run or not. This possibility can be checked by
&' just by reading the current annotation, with a transition true or false.

We will use & and &' to find the inwvalid paths of the run of &7, just by changing the acceptance
condition: £29({g,4)) ==+ 1.



Proposition: The one-way tree automaton &' accepts a (An x St)-labeled tree iff the corresponding
run of & is not accepting.

But &” is not deterministic, and accepts a tree if &' has some accepting run. We can view &' as a
word automaton: it follows just a branch of the tree. For this reason it is possible to co-determinize
it: determinize and complement it in a singly exponential construction (see [16]) to construct the
automaton & that accepts those of the (An x St)-labeled trees that represent the accepting runs
of &.

We will define the product %' := € x 2 x & of the previous automata, that accepts a (An x St)-
labeled input tree iff the corresponding run of & is accepting. Let

A = (Q% x Qo x Qz, An x St, 8,40, , Acc),
o ({a%,492,95) > (M, 7)) : (0¢(g¢, (1)), 09(a2, (m, ™)), 0z(az: (m, 7)),

where Q¢ is the state space of ¢, and so on. The acceptance condition Acc of £’ is then exactly
the one of &: Rz ((¢¢,92,4z)) = 25(4z)-

We define the automaton % to be the “projection” of #': £ nondeterministicaly guesses the
labels from An x St, £ has no input alphabet. Finally £ is a one-way tree-automaton that is
equivalent to &: it accepts the same trees. The strategy and annotation depended on the input
tree, now after the projection, & can search the run of .o/ for each input tree. The automaton %
has (like 2') 4/Q . 21QF (m+1) . 9clQIm — 9IQI(m+1) . 9|QI(2+em) gtates. As a one-way automaton,
% cannot distinguish 7" and G. In other words, it has an accepting run on 7' iff it has one on G.
Positional strategy on G gives a “regular” runon 7. B



